
FMOD EVENT SYSTEM
BEST PRACTICES FOR PROGRAMMERS

http://www.fmod.org

Updated: May 09

❘ 2 ❘ FMOD EVENT SYSTEM

LEGAL NOTICE
The information in this document is subject to change without notice and does not

represent a commitment on the part of Firelight Technologies. This document is

provided for informational purposes only and Firelight Technologies makes no

warranties, either express or implied, in this document. Information in this document,

including URL and other Internet Web site references, is subject to change without

notice. The entire risk of the use or the results of the use of this document remains

with the user. Complying with all applicable copyright laws is the responsibility of the

user. Without limiting the rights under copyright, no part of this document may be

reproduced, stored in or introduced into a retrieval system, or transmitted in any form

or by any means (electronic, mechanical, photocopying, recording, or otherwise), or

for any purpose, without the express written permission of Firelight Technologies.

© 2009 Firelight Technologies Pty. Ltd. All rights reserved.

Other product and company names mentioned herein may be the trademarks of their

respective owners.

 BEST PRACTICES FOR PROGRAMMERS ❘ 3 ❘

TABLE OF CONTENTS
LEGAL NOTICE... 2

TABLE OF CONTENTS... 3

INTRODUCTION.. 5

BENEFITS OF USING FMOD EX AS OPPOSED TO FMOD EVENT SYSTEM................ 6

PURPOSE OF THIS DOCUMENT ... 6

FMOD EVENT SYSTEM.. 7

WHAT FILES FMOD EVENT SYSTEM USES AT RUNTIME.. 7

MEMORY MANAGEMENT... 7
FEV DATA IN MEMORY .. 8
EVENT INSTANCE DATA... 8
WAVE DATA .. 10

LOADING STRATEGIES ..12
IN GENERAL... 12
‘LOAD EVERYTHING UP FRONT’ MODEL ... 13
‘RANDOM ACCESS’ MODEL ... 13
HYBRID MODEL... 14
REAL EXAMPLE ... 14

"INFOONLY" EVENTS...15

USE A WRAPPER CLASS AND CALL GETEVENTXXX AS NEEDED.............................16

USE “JUST FAIL IF QUIETEST” ..16

USE EVENT CALLBACKS...17

USE “PROGRAMMER” SOUNDS FOR DIALOG/VOICE OVER..................................17

LOAD/UNLOAD PROJECTS AS NEEDED...18

USE NONBLOCKING LOADING ..18

OFFLINE BUILD PROCESS..19

SIMPLE EVENTS ...19

❘ 4 ❘ FMOD EVENT SYSTEM

This page is intentionally blank…

 BEST PRACTICES FOR PROGRAMMERS ❘ 5 ❘

INTRODUCTION
What is the difference between FMOD Ex, FMOD Event System and FMOD Designer?

 FMOD Ex

This is the “low-level” engine. It contains all the low-level “primitives” and
capabilities that make FMOD so powerful e.g. the software mixer, DSP engine,
hardware interface output modules, 3D capabilities etc. It’s quite reasonable to
decide to use just FMOD Ex in your game especially if you’re transitioning from a
legacy system or you already have sound designer tools that you want to keep
using.

If you do decide to use just FMOD Ex for your game, you won’t be able to use the
FMOD Designer tool to create content for it.

 FMOD Even t System

The FMOD Event System is built on top of FMOD Ex. It is a powerful application
layer on top of FMOD Ex that adds a wealth of features to the already powerful
“low-level” engine. If FMOD Ex were likened to “C” (raw and powerful), the FMOD
Event System could be likened to “C++” (higher level concepts, more abstract).

The FMOD Event System is used to play back content created with the FMOD
Designer tool – this vastly simplifies life for the Programmer because FMOD
Designer puts a lot of creative power in the hands of the Sound Designer and the
FMOD Event System takes care of a lot of the grunt work that the Programmer
would ordinarily have to do.

The FMOD Event System runs on content created by FMOD Designer. The two are
inseparable.

 FMOD Designer

FMOD Designer is a sound designer tool used for authoring complex sound events
and music for playback with the FMOD Event System. It’s an easy to use graphical
application (for both Windows and Macintosh) that puts a lot of creative power in
the hands of the sound designer and allows them to create freely without having to
collaborate with the programmer on every trivial matter. It presents the sound
designer with a broad canvas and a palette that contains all of FMOD’s most
powerful features and it stimulates experimentation and encourages creativity.

❘ 6 ❘ FMOD EVENT SYSTEM

BENEFITS OF USING FMOD EX AS OPPOSED TO FMOD
EVENT SYSTEM
It’s ok to not use the FMOD Event System if it will only get in the way. Choose what to use
based on your unique game/application. Specifically, it may be better not to use the FMOD
Event System if you have to integrate with an existing legacy system that is very different in
concept. Study the FMOD Event System and decide what features you would benefit from
and what features would present themselves as limitations – don’t commit to taking on the
FMOD Event System and then fight it at every step. In this case, it may be better to just use
FMOD Ex.

Features of FMOD Ex can quite easily be used alongside the FMOD Event System. You can
pick and choose what to use for different parts of your game depending on your unique
situation. For instance, you may decide to use the FMOD Event System for all your general
sound events and music but you might use FMOD Ex to implement the low-level details of a
legacy lip-synch engine which is tightly integrated into your animation system.

The choice is yours – you don’t have to go all FMOD Ex or all FMOD Event System.

PURPOSE OF THIS DOCUMENT
This document is intended to provide advice on best practices for programmers using the
FMOD Event System. Readers are advised to make themselves familiar with the Event System
API and example programs that are shipped with the API before reading this document.

This document assumes the reader has programming experience and understands the basic
methods required to implement the FMOD Event System.

 BEST PRACTICES FOR PROGRAMMERS ❘ 7 ❘

FMOD EVENT SYSTEM
In this chapter of the document, the use of data in the FMOD Event System is described in
detail. The chapter begins will an overview of the basic operations of the Event System.
Memory management and load strategies are also considered in later sections.

WHAT FILES FMOD EVENT SYSTEM USES AT RUNTIME
When a Sound Designer builds a project using FMOD Designer, a number of files are
produced. Of these files, only two file types are used at runtime. The FMOD Event System
uses:

 .FEV

An FEV file contains all the event definitions for one whole project. This is the file
that the programmer loads (using EventSystem::load). It contains all information
required to create events and it also contains information about its associated FSB
files. The fact that there is information on the associated FSB files within each FEV
means that you cannot generally rebuild the FSB files without rebuilding the FEV as
well.

 .FSB

An FSB file is a collection of sounds. There may be one or more FSB files
associated with an FEV. FSB is a generic format that can be used with both FMOD
Ex and FMOD Event System. In the case of the FMOD Event System, FMOD
Designer creates one FSB for every Wave bank that the Sound Designer specifies.
This is where the actual wave data for the events is stored.
NOTE: Do not rebu i ld FSB f i les beh ind the FEV’s back!

MEMORY MANAGEMENT
To begin with, it’s highly recommended that you provide FMOD with a pre-allocated pool of
memory to work with by calling FMOD::Memory_Initialize. FMOD will then use its own memory
allocator and operate solely within that block of memory. This will help to reduce the load on
the system heap - meaning less fragmentation of the system heap and possibly even faster
performance. On many platforms, the system memory allocator is very slow and performance
can suffer if it’s used.

There are three major areas where FMOD Event System uses memory:

 FEV data in memory
 Event instance data
 Wave data

❘ 8 ❘ FMOD EVENT SYSTEM

 Figure 1: FEV data

FEV DATA IN MEMORY
This is the memory FMOD Event System uses to store the FEV file in memory. When you load
an FEV file you can expect it to use slightly more memory than it uses on disk. This memory is
allocated when EventSystem::load() is called and will remain in use until the project is unloaded
with EventProject::release() or EventSystem::unload().

 Figure 2: FEV data in memory

EVENT INSTANCE DATA
This is the memory required for instances of all the events in an FEV. If you think of FEV data
in memory as the “definition” of an event, then an event instance is an actual working
instance of that definition that can be manipulated at runtime, started, stopped, moved in 3D
space etc. DSP effects that are placed in event layers are regarded as event instance data
because they may need to allocate their own history buffers etc. for each event separate event
instance. All the layers, sounds and effects in an event are tied together internally by
ChannelGroups which must also be instanced in the same way.

FEV

FEV

EVENT DATA

EVENT DATA

WAVE DATA

 BEST PRACTICES FOR PROGRAMMERS ❘ 9 ❘

 Figure 3: Hierarchy of an event instance

The number of event instances that FMOD Event System will create for each event
corresponds directly to the event property “Max playbacks” which is controlled by the Sound
Designer using FMOD Designer. If the Sound Designer sets “Max playbacks” to 50 then
FMOD Event System will allocate memory for 50 instances of that event.

Event instances are created at one of two times:

 When you call getGroupXXX() with “cacheevents” = true, the FMOD Event System will
create instances for a l l events in that group and all of that group’s subgroups.

 When you call getEventXXX(), the FMOD Event System will create instances for just that
event.

Event instances are only freed when you call EventGroup::freeEventData() or when the project
is unloaded. If you pass an event instance handle to EventGroup::freeEventData() then event
instance data for just that event is freed (along with wave data), otherwise event instance data
for the whole group will be freed (along with wave data).

When the FMOD Event System needs to allocate event instance data for an event, it always
allocates a l l instances of an event at the same time. Conversely, it always frees all event
instance data for an event at the same time. This means that if you have an event that has
“Max playbacks” set to 50, FMOD Event System will allocate 50 instances up front the first
time you get the event with getEventXXX().

Incidentally, setting “Max playbacks” to 50 is incredibly wasteful of memory. As a guideline,
most events should have “Max playbacks” less than 10, usually less than 5.

❘ 10 ❘ FMOD EVENT SYSTEM

 Figure 4: Mulitple event instances

WAVE DATA
This is the actual waveform data used by the events. It is, by far, the largest user of memory in
the FMOD Event System. Wave data is stored in .FSB files on disk and, when loaded into
memory, will use different amounts of memory depending on the value of the wave bank
property “Bank type”.

Decompress into memory
When the FMOD Event System needs to load a subsound from a “Decompress into memory”
wave bank, it will decompress the subsound into memory in full. This means it will be
decompressed from MP3 or ADPCM or whatever the compression format of the bank into
PCM in memory. As such it will use the most memory of any of the different bank types.

 Figure 5: Decompressing wave data into memory

Load into memory
Load into memory is similar to “Decompress into memory” in that the whole subsound is
loaded into memory. The difference is that each subsound is stored in memory in its
compressed form so it uses less memory. This means that if the wave bank property
“Compression” is set to “MP3”, the subsound will be stored in memory as MP3 data and fed
directly to FMOD’s software mixer. This method uses less memory but it uses more CPU
when a sound is played because the MP3 is effectively being decompressed in real-time.

 BEST PRACTICES FOR PROGRAMMERS ❘ 11 ❘

Note that not all formats can be played back directly from compressed data. Currently only
MP3, MP2, ADPCM and XMA are supported. See FMOD_CREATECOMPRESSEDSAMPLE. If
you use “Load into memory” with an unsupported format it will fall back internally to
“Decompress into memory”.

 Figure 6: Compressed wave data in memory

Stream from disk
With “Stream from disk” wave banks, subsounds are not loaded completely into memory –
subsounds are streamed from disk as they’re played. This means they use a lot less memory
than the other bank types but they generate regular disk reads as they’re played. If disk reads
aren’t completed in a timely manner, e.g. other game systems are using the disk at the same
time, playback of the subsound can stutter due to buffer underrun. Disk access is relatively
slow so there may also be some latency between when a streamed subsound is triggered and
when it is audible.

 Figure 7: Stream from disk

It’s only possible to stream one sound at a time from any given wave bank – this is
fundamental to how streams work. So, if the FMOD Event System needs to play two sounds
at once from the same streamed wave bank then it needs to use two streams. If it needs to
play fifty sounds then it needs to use fifty streams. The more streams accessing the disk at
the same time the slower those disk accesses will be, to the point that streams may stutter
due to underrun. In order to limit the number of streams that the FMOD Event System will
create for any given wave bank, each wave bank has a “Max streams” property.

❘ 12 ❘ FMOD EVENT SYSTEM

 Figure 8: Demonstrating maximum streams

LOADING STRATEGIES

IN GENERAL

Loading
There are different methods available to Programmers to load data using the FMOD Event
System. They are (in part):

 Use EventGroup::loadEventData to load event data per EventGroup
 Use getEventXXX to load event data per event

EventGroup::loadEventData loads data for all events in a group - getEventXXX loads data for
just the specified event. You can call getEventXXX on a couple of events in a group and, at a
later time, call EventGroup::loadEventData to load the rest of the group. FMOD will never load
something twice so it’s safe to call getEventXXX and loadEventData as many times as you like
and FMOD will make sure everything’s loaded correctly.

If you want to load event data for a disparate selection of events and/or event groups quickly,
you can use the convenience function EventProject::loadSampleData. It takes an array of
events and event groups and calls EventGroup::loadEventData on them all in one big batch.
Using one call to EventProject::loadSampleData is more efficient in term of disk
reading/seeking than making multiple calls to EventGroup::loadEventData.

Freeing
If you keep calling getEventXXX for different events, FMOD will happily load event data for
those events and that data will keep building up in memory unless you call
EventGroup::freeEventData at some point (or EventProject::release, EventSystem::unload or
EventSystem::release.)

 BEST PRACTICES FOR PROGRAMMERS ❘ 13 ❘

This is a common p i t fa l l ! If your memory usage keeps rising the more you play your game,
make sure you’re calling EventGroup::freeEventData appropriately.
You can free event data per EventGroup or per event.

ʻLOAD EVERYTHING UP FRONTʼ MODEL
For small games or games that are level based etc. it may make sense to use
EventGroup::loadEventData to load whole EventGroups worth of data at once. This will incur
an initial delay while loading is occurring and may cause a large memory footprint but the trade
off is that, after that initial hit, everything is ready to play instantaneously. You can then
freeEventData on the same EventGroups when the level is unloaded.

 Figure 9: Demonstrating the loadEventData method

ʻRANDOM ACCESSʼ MODEL
For free-roaming games, mmo’s etc. it makes more sense to use getEventXXX to load data per
event as needed because you can’t know ahead of time what to load. This means you have to
accept that loading will occur on-the-fly and loading takes time – you need to handle the
potential loading delay in your game. Load events before you need them e.g. if you’re
approaching a certain creature, call getEventXXX for the events it uses before the player gets
to it so the events are ready to play when the player needs to hear them.

When an event is no longer required, use freeEventData and pass it the event handle to free
the event data for just that event. To avoid constantly loading/freeing the same events, let
unused events stay in memory for a while and only free them after they’ve been unused for a
certain amount of time. Old, unused events will gradually get freed and you’ll be left with a
slowly evolving “working set” of events that balances memory footprint against excessive disk
loading.

❘ 14 ❘ FMOD EVENT SYSTEM

 Figure 10: Demonstrating the getEvent(event) method

HYBRID MODEL
Most games will benefit from using a bit of both models. You’ll most likely load some things up
front and load some things on-the-fly. The peculiarities of your game will dictate which method
to use where.

REAL EXAMPLE
 UI and first person player sounds e.g. HUD, player grunts and groans. Loaded up front

so they’re always available in an instant. Group them into an event group in FMOD
Designer and load the whole event group at once.

 Creature sounds. Make an event group per creature – load/unload whole event group
as needed.

 Physics sounds like footsteps on grass, concrete, gravel etc. Load/unload per event as
needed. Use a lazy unloading mechanism so events that haven’t been used in a while
get unloaded.

 Music. Load/unload per event. Wave banks set to “Stream from disk”. Or,
alternatively, use the interactive music feature of FMOD Designer.

 Voice-over/dialog. Use one event in conjunction with a “programmer” sound. Voice-
over event is always loaded – programmer is responsible for loading/unloading each
dialog line as needed. (See below)

 BEST PRACTICES FOR PROGRAMMERS ❘ 15 ❘

PRELOADING FSB FILES
Sometimes it might be convenient for a game to preload whole FSB files before FMOD needs
them. It is possible to do this with EventSystem::preloadFSB and EventSystem::unloadFSB.
These functions allow you to register an FSB file with FMOD that you’ve loaded yourself.

Whenever FMOD needs to open an FSB file it first checks to see if any FSB files have been
registered with EventSystem::preloadFSB. If it finds a matching FSB file in the registered list, it
uses that instead of trying to open it on the disk. This allows you to preload all the soundbanks
you’ll need and prevent FMOD from trying to hit the disk when you don’t want it to.

See the FMOD Ex Programmer’s API documentation for details on how to use preloadFSB and
unloadFSB.

'INFOONLY' EVENTS
When calling one of the getEventXXX functions, it’s possible to specify
FMOD_EVENT_INFOONLY as the “mode” parameter. This flag tells FMOD to retrieve a handle
to the actual FEV data of the event, rather than retrieve a real instance of the event.

When you specify FMOD_EVENT_INFOONLY, FMOD will return a handle to the 'INFOONLY' or
'parent' event – this is effectively a 'prototype' for that event. You cannot call Event::start on
an 'INFOONLY' event – you need to get a real event instance to do that - but you can get and
set the properties of an 'INFOONLY' event.

The 'INFOONLY' event has a number of uses:

• You can use an 'INFOONLY' event to query event properties without loading all the
event data for that event. If you call getEventXXX without specifying
FMOD_EVENT_INFOONLY, FMOD will make sure all instances of that event are
allocated and all wave data for that event is loaded so that it’s ready to be played.
When you specify FMOD_EVENT_INFOONLY, FMOD will not load wave data or allocate
instances for the event. This is an efficient way to query event properties while avoiding
data loading and memory allocating when playback is not required.

• You can set 'default'” values for event properties using 'INFOONLY' events. If you get

an 'INFOONLY' event and set it’s 'Volume' property to 0.5f, whenever you
subsequently call getEventXXX to get a real event instance, that real instance’s
'Volume' property will be initialized to 0.5f by FMOD. This is a handy shortcut and it
works for all event properties.

Setting default values is also fundamental to using the 'just fail if quietest' 'Max playbacks
behavior'. This is explained in more detail below in the 'USE JUST FAIL IF QUIETEST' section.

❘ 16 ❘ FMOD EVENT SYSTEM

COMMON USAGE
This section contains some common usage patterns and advice on optimal usage of FMOD
Event System in general. As always, “there’s more than one way to do it” so take this advice
as a starting point in creating the best solution for your particular game.

USE A WRAPPER CLASS AND CALL GETEVENTXXX AS
NEEDED
To save memory you need to keep the event property “Max playbacks” as low as possible.
This means that you’ll have, say, 1000 torches on the wall of your dungeon but only 4 event
instances to produce the sound for all of them. This is fine – the player never needs to hear
1000 torches playing simultaneously.

So, you’ll have 1000 “torch” game objects and each of these game objects can call
getEventXXX when they’re in suitable range of the player in order to acquire an event instance.
When you call getEventXXX N+1 times (with N being “Max playbacks”) a previously acquired
event instance will be stolen – this means that one of your game objects will now have an
event instance handle that has been made invalid. Whenever you use that invalid handle,
FMOD will give you an FMOD_ERR_INVALID_HANDLE error.

You need to throw that event instance handle away because it’s useless now. If that torch
needs to be audible at a later time, it can call getEventXXX again to reacquire an event
instance.

USE “JUST FAIL IF QUIETEST”
When you call getEventXXX and all instances of that event are in use, an event instance that’s
already playing must be stolen. Precisely which event instance gets stolen is determined by
the “Max playbacks behavior” for the event in question. The most interesting “Max playbacks
behaviour” for 3D events is “just fail if quietest”.

When the “just fail if quietest” stealing behavior is invoked, FMOD calculates what the audibility
of the new event instance will be and, if the new event instance will be less audible than any of
the currently playing event instances, the getEventXXX will fail and no event instance will be
stolen.

This means you can call getEventXXX for all torches within, say, a 20 meter radius of the player
every game frame and FMOD will fail all the quietest events and allow only the most audible
events to keep playing. This is the best way to keep “Max playbacks” low while still having a
world containing thousands of sounds.

In order for this method to work, FMOD must calculate what the audibility of the new event
instance will be. In order to do this, you need to set some parameters and properties for the
event before calling getEventXXX. How is this done? Call getEventXXX with the
FMOD_EVENT_INFOONLY flag. Set the required parameters and properties on the

 BEST PRACTICES FOR PROGRAMMERS ❘ 17 ❘

“INFOONLY” event and then, finally, call getEventXXX without the FMOD_EVENT_INFOONLY
flag to attempt to get the event for real.

When setting parameters and properties on the “INFOONLY” event, set everything that will
affect the event’s final audible volume. This may include event volume, 3D position, orientation
(if cones are used), any event parameters that contain volume curves, occlusion etc.
See the “max_playbacks” example program for a demonstration of this technique.

USE EVENT CALLBACKS
Use Event::setCallback to set a callback function for your events. This function takes a
“userdata” parameter which you can use to pass in a pointer to your wrapper class. Then, in
the callback function, which must be a C function, you can cast the “userdata” parameter back
to your wrapper class and have full access to the wrapper class that owns the event instance
in question.

When an event instance is stolen, the callback function for that event instance is triggered with
FMOD_EVENT_CALLBACKTYPE_STOLEN. This allows you to access your wrapper class
immediately and clean up all references to the event instance just before it gets stolen.

You may also be interested in FMOD_EVENT_CALLBACKTYPE_EVENTFINISHED. This will be
called when the event instance is stopped or finishes playing for any reason. This is useful for
catching when oneshot events have finished playing.

USE “PROGRAMMER” SOUNDS FOR DIALOG/VOICE OVER
It’s easy to waste a lot of memory when implementing dialog with FMOD Designer. The naïve
approach is to create a separate event per dialog line. This generally means you’ll have
thousands of events which are identical in every way except for the fact that they play a
different wave file.

This is incredibly wasteful because you’ve got a lot of duplicated data when all you really need
is to choose a different wave file at runtime depending on what dialog line you want to play.
Instead of creating an event per dialog line, the Sound Designer should create a single event to
handle all dialog and make use of a “Programmer” sound entry. Note : Refer the Sound
Designer to the FMOD Designer user manual for detailed instructions on creating an event
using a ‘Programmer’ sound entry.

A “programmer” sound is like an empty container. When a “programmer” sound is played,
FMOD calls the event callback with FMOD_EVENT_CALLBACKTYPE_SOUNDDEF_CREATE.
The Programmer then creates an FMOD::Sound any way they like (maybe call
System::createSound, maybe call getSubsound on an already open FSB stream, it doesn’t
matter) and passes a pointer to it back to FMOD. FMOD then uses this FMOD::Sound as it
would any other that it created itself.
When FMOD has finished with the FMOD::Sound it calls the event callback again but this time
with FMOD_EVENT_CALLBACKTYTPE_SOUNDDEF_RELEASE. This tells the Programmer

❘ 18 ❘ FMOD EVENT SYSTEM

that FMOD has finished with that FMOD:Sound and will not use it again. The FMOD::Sound
can now be freed or released or whatever is necessary.

So, instead of thousands of nearly identical events, you now have only one event that has an
empty container that the Programmer fills at runtime depending on which line of dialog is
required… and you’ve saved yourself a very significant chunk of memory.

The creating and freeing of “programmer” sounds is completely independent of FMOD
Designer and the FMOD Event System. You don’t need to make a wave bank with all the
dialog lines in it – you don’t need to include all those lines anywhere in an FMOD Designer
project. It’s completely up to you how you manage the dialog lines – you may keep them as
separate MP3 files (or even OGG if you like). You may use the FSBank tool to create a wave
bank for all your dialog lines. The decision is yours.

Note: If you decide to use FSBank to create FSB files for your dialog lines, consider using the
“Small sample headers” option to reduce FSB size. If all of your dialog lines have the same
sample rate and number of channels, checking the “Small sample headers” option tells
FSBank to only store the sample length for each subsound in the FSB. This reduces the size of
the sample header for each subsound and can save a significant amount of disk/memory. To
use this feature with the command-line version of FSBank (fsbankexcl.exe) specify the “-b”
command-line option.

LOAD/UNLOAD PROJECTS AS NEEDED
Multiple projects may be loaded at once. In many scenarios it’s beneficial to break up your
audio data into multiple projects and load/unload them as needed. This can be done to
reduce the memory footprint and it will also make it easier for multiple Sound Designers to
work on different parts of the game simultaneously. Break up projects by “level”, “world”,
“creature” or whatever is applicable to your game.

USE NONBLOCKING LOADING
Pass FMOD_EVENT_NONBLOCKING to all calls to EventGroup::loadEventData and
getEventXXX to tell FMOD to use nonblocking loading when loading data for those event(s).
This will instruct FMOD to perform all loading in a separate thread so it won’t block your main
thread when it needs to perform lengthy file operations.

It’s important to be consistent when using the FMOD_EVENT_NONBLOCKING flag because
you can’t change your mind at a later date. If you initially call EventGroup::loadEventData or
getEventXXX with FMOD_EVENT_NONBLOCKING then those event(s) will always be in
nonblocking mode until EventGroup::freeEventData is called on them. Likewise, if you initially
call EventGroup::loadEventData or getEventXXX without FMOD_EVENT_NONBLOCKING then
they’ll be blocking until EventGroup::freeEventData is called on them.

To reduce blocking when loading FEV files with EventSystem::load, load them from memory.
This means you physically load the FEV file into a memory buffer (any way you like) and then
pass an FMOD_EVENT_LOADINFO structure with a valid “loadfrommemory_length” when

 BEST PRACTICES FOR PROGRAMMERS ❘ 19 ❘

calling EventSystem::load. If “loadfrommemory_length” is non-null, the “name_or_data”
parameter to EventSystem::load is interpreted as a pointer to a memory buffer containing the
FEV file.

When EventSystem::load returns you can immediately free the FEV file buffer.

OFFLINE BUILD PROCESS
There’s a command line version of FMOD Designer called “fmod_designercl.exe”. This version
can be used to integrate the building of FMOD Designer projects with the rest of your
automated build process.

When FMOD Designer builds a project it can (optionally) output a programmer report and a
header (*.h) file containing defines for everything in the project. Using your favorite text
processing language (like Perl for instance) you can parse the programmer report and extract
information about the project, convert the data into a different form that is usable by the game,
create some glue code, generate statistics and throw up warnings if a limit is exceeded or
invoke other post-process steps on the built files. The format of the programmer report is
specifically designed for this purpose.

Each project can also have a list of “Pre-build”, “Post-build”, “Pre-save” and “Post-save”
commands that are executed at the appropriate time. “Pre-build” and “Post-build” commands
are also run when using fmod_designercl.exe. Use these hooks to do pre- and post-
processing – a common usage here is to interface with your source code management system
like Perforce for example.

Incidentally, the .FDP files created by FMOD Designer use XML and can be read, modified and
written by a savvy script programmer. Instead of parsing the programmer report, it may suit
you better to parse the .FDP file itself and extract information from it directly.

A f ina l word : Only the .FEV and .FSB files need to ship with the final game. Nothing else!

SIMPLE EVENTS
FMOD Designer and the FMOD Event System have an optimized code and data path for
'simple events' that uses less memory and less CPU at runtime.

FMOD Designer detects 'simple events' at build-time and builds them into the .FEV file
differently than normal events. The FMOD Event System then uses an optimized code path to
handle playback and manipulation of these simple events at runtime. There is no special switch
or property that needs to be set to flag a specific event as 'simple', FMOD Designer
automatically treats an event as simple if it meets certain criteria. An event will be considered a
simple event only if a l l the following criteria are met.

❘ 20 ❘ FMOD EVENT SYSTEM

A simple event has:

- No parameters
- No effects
- No user properties
- Only one layer
- Only one sound (Note: the sound definition may have multiple entries)
- No 'programmer' sounds

Due to the optimized code and data path, simple events use significantly less resources than a
standard event. By all means make your 'feature' events as complicated as you like, but simple
events are highly encouraged where possible.

Note: When FMOD Designer is deciding whether an event is simple or not, it takes into
account the layer enable/disable checkbox. This means that you can create an event with
multiple layers but as long as only one of those layers is enabled then it will be considered a
simple event.

For example, you could create one event designed for both PS2 and PS3. You’d give it two
layers – a “PS2” layer and a “PS3” layer – and use the layer enable/disable checkbox to enable
only the “PS2” layer when the PS2 platform is selected and likewise for PS3. On the PS2 layer
you could use a low-quality sound and on the PS3 layer you could use a high-quality sound.
When that event gets built, FMOD Designer will see that only one layer is enabled so it will
build it as a simple event.

Use this method to avoid creating different events for different platforms when you’re forced to
use different sounds for them.

